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ABSTRACT 
 
We introduce modular arithmetic and properties of congruences. Then we show how to solve a               
linear congruence equation, using intuition and by applying the Extended Euclidean Algorithm.            
Building on this concept, we introduce linear congruence systems, which we solve by the              
Chinese Remainder Theorem. Additionally, we briefly review the practice of cryptography,           
before exploring one method called RSA encryption in detail. RSA cryptosystems rely on             
modular exponentiation, which we demonstrate through a banker-client model example. Finally,           
we implement a new concept where we can combine cryptosystems to create networks involving              
unique exchanges. This is a novel idea that can be used to generate data for scientific induction                 
and share secrets among various parties.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



BACKGROUND 

a. Modular arithmetic 

Modular arithmetic is a subset of number theory where the focus is on working with               

integer remainders.1 This is achieved through implementation of linear congruences, where           

integers a and b are congruent modulo n if their remainders when divided by n are the same. 

 
Figure 1. Linear Congruences. 

Think of linear congruences as wrapping a number around a circle. The circle has equally sized                

increments which include all integers from 0 to n - 1. Move around the clock a steps and the                   

number that we land on is the residue, or remainder, modulo n. If b has the same result modulo n                    

then a and b are congruent modulo n.  

 

 

We will not take the time to prove it here, but linear congruences have several key properties that                  

can be manipulated.1, 2 



 
Figure 2. Properties of Linear Congruences. 

The properties from Figure 2 will be our toolbox for working with linear congruences.              

Reflexivity, symmetry, and transitivity are 3 properties which apply to every equivalence            

relation. In an equivalence relation, equivalence classes are ways of grouping numbers            

according to an algorithm. Modulus is an equivalence relation where the algorithm is the              

remainder of an integer division expression. 

Sometimes, linear congruences will be similar to algebraic equations. This is when they             

will include a variable that needs to be solved for. Take the linear congruence 

  

The minimal solution x is x = 2. We can use our intuition to solve simple linear congruences the                   

same way we would approach an easy algebraic equation like 3x = 12 - x where x = 3. That                    

being said, it is not always feasible to solve linear congruence problems by inspection. When this                

happens, we turn to the Extended Euclidean Algorithm, a concept in number theory which has               

been used for thousands of years. 

Essentially, we use the algorithm to solve for the multiplicative inverse of the modulo n.               

Then we can manipulate our congruence equation to get the value for x. Integer b is the                 

multiplicative inverse of a number modulo n if 

 



The steps for the Extended Euclidean Algorithm are shown in Figure 3. 

 
Figure 3. Extended Euclidean Algorithm. 

(https://mathworld.wolfram.com/EuclideanAlgorithm.html) 

The left side of the figure represents the Euclidean Algorithm, which is used to find the greatest                 

common divisor (gcd) of two integers.3 This is represented in the form (a, b). The right side of                  

the figure shows the extension of the algorithm, which uses backsolving to figure out the               

multiplicative inverse. We can apply this to a difficult congruence problem in order to solve it. 

 

Our initial observation is that the gcd of 39 and 49 must be 1. We can confirm this using the                    

Euclidean Algorithm. We start by writing the division algorithm for the two numbers. 

 

Then we follow the algorithm to get the gcd. 

 

Next, we work backwards in order to find the multiplicative inverse. 

 

We can substitute in (b - a) for -39 in the next step. 

https://mathworld.wolfram.com/EuclideanAlgorithm.html


 

We substitute in (b-a) for -39 and (4a-3b) for 9. 

 

Substitute 49 back in for b and 39 back in for a. 

 

This means that  

 

-5 (mod 49) is congruent to 44 (mod 49), which is easier to work with. 

 

Remember from the beginning of the problem that we are working with 534 (mod 49). 

 

Now that we have rewritten this as simply as possible, we use the multiplication property for                

linear congruences to solve for x. 

 

Modular arithmetic is not always limited to 1 congruence equation or parameter. It also includes               

systems of congruences, written as 

 
Figure 4. System of Congruence. 



Sometimes these can be solved intuitively, but with larger numbers and more parameters, a              

systematic algorithm is required. For this, we turn to an ancient Chinese theorem that was used to                 

calculate the calendar and find the number of soldiers when marching in lines.4 Nowadays, we               

have found more uses for this theorem, especially in cryptography and cybersecurity schema. 

b. The Chinese Remainder Theorem 

The theorem being described is the Chinese Remainder Theorem. Sometimes it is            

called the Sun Zhu Theorem after the Chinese mathematician who invented it. It tells us that                

there is always a unique solution for systems of congruences up to a certain modulus, and can be                  

used to find said solution.5  

The Chinese Remainder Theorem uses pairwise relatively prime positive integers as the            

modulus values n1, n2,..., nk. Relatively prime (coprime) implies that two integers do not share               

any common factors other than 1, or (a, b) = 1. Pairwise relatively prime implies that every pair                  

of integers a and b from the set of modulus values are coprime. 

The system of congruences has a unique solution modulo P = n1n2...nk. For each              

congruence equation, the number is congruent to P divided by the original congruence modulo6.              

We obtain P1, p2,..., Pk which will be used to find Q1, Q2,..., Qk. Then every modulo expression                  

will be rewritten as 

 
Figure 5. Pairwise notation. 

Our final expression congruent modulo N will be equal to 

 
Figure 6. Solution to Chinese Remainder Theorem. 



We involve our a1, a2,..., ak in the final expression. The roundabout method gives us our solution                 

(which can be represented as an equivalence class) of our system of congruences. Sometimes, the               

Extended Euclidean Algorithm will be used for intermediate steps while finding the            

multiplicative inverses of the numbers modulo n1, n2,..., or nk. 

Let us explore this method by solving the system of congruences portrayed below: 

 

Our P is equal to 105, which is the product of the n1, n2, and n3 values. Dividing by the original                     

congruence modulos we obtain  

 

Then we rewrite this as 

 

These are all fairly easy to solve, so we can avoid using the Extended Euclidean Algorithm. 

 

Now we write our final expression congruent modulo N. We simplify the congruence equation to               

obtain our value for x. 

 

So the equivalence class, or solution set, for x is x = 53 + 105t, where t belongs to the set of                      

positive and negative integers. The residue is x = 53. Regardless of harder problems with larger                



numbers, different expressions, and more congruence equations (parameters), evidently the          

process is inherently basic. The proof of the Chinese Remainder Theorem is not as simple. 

Although there are other methods for solving systems of congruences, the Chinese            

Remainder Theorem is the most systematic and always works. Other techniques may involve             

substitution or trial and error – methods that fall apart with increasing difficulty. 

c. Application of the Chinese Remainder Theorem: Cryptography 

The remainder of this paper will concentrate on the application of the Chinese Remainder              

Theorem to cryptography. Cryptography is the art and science of keeping information secure             

from unintended audiences by using encryption, or encoding it.7 Ancient cryptography included            

the Caesar cipher, an attempt at encoding data by shifting every letter in the alphabet one to the                  

right. It also included the polyalphabetic cipher, which shifted every letter according to a code               

word. This was more secure, although both parties had to know the code word in advance. 

Modern cryptography is based in technology and cybersecurity. Security is no longer            

dependent on the secrecy of the encryption method or algorithm, but only on the secrecy of keys.                 

The new ciphers (encryption algorithms) are rooted in complex number theory, specifically            

modular arithmetic and application of prime numbers. We are going to focus on RSA              

encryption, a certain type of cipher, and applying the Chinese Remainder Theorem to RSA              

structures. 

 

 

 

 

 



APPLICATION TO CRYPTOGRAPHY 

a. RSA Encryption 

Encryption uses a specific key to map a message to a ciphertext message. Decryption is               

the process of decoding a message, and relies on applying either the same key or a different key.8                  

In RSA encryption, the keys used for encryption and decryption are related. Ronald L. Rivest,               

Adi Shamir, and Len Adleman were the first cryptographers to connect information security to              

modular exponentiation in 1977. This was a novel concept as the process of raising a number to                 

an exponent, dividing by the modulus, and outputting the remainder yields an irreversible             

outcome. Given the exponent, modulus, and new value that is obtained, the original number              

cannot be derived.  

 

In other words, c, in the congruence equation above, cannot be easily decrypted without knowing               

the original number A. 

However, a person who has access to the original number could easily work backwards to               

obtain it again. Letting d equal to an integer such that 

 

then applying a new function 

 

is a surefire way to reverse the exponentiation. So the last puzzle piece to RSA encryption 

involves a reliable (replicable, accurate) algorithm to generate a number d.  

The optimal way to do this involves Euler’s totient function, φ (pronounced phi). This 

is a high order arithmetic function that is prevalent in number theory. The totient function 

denotes the number of positive integers that are relatively prime to a number N.9 It relies on 



knowing the prime factorization, which will always involve 2 prime factors.9 When N is equal to 

p times q, φ(pq) equals (p-1) times (q-1) under all circumstances where p and q are prime. As 

finding a number’s prime factorization is a fundamentally hard problem, but multiplying p 

times q together is simple to do even for very large inputs, this is the key to RSA Encryption.  

We start with Euler’s Theorem:10 

 

Then we manipulate as follows. 

 

This process yields an equation for finding e. Remember our original equation: 

 

Now we set the exponent portion of the congruences equal to each other. 

 

Divide by e on both sides. Our equation for d is as follows: 

 

Without knowing the original numbers multiplied together, p and q, an infiltrator to the system               

will not be able to compute the totient function. Going the other way (from the receiving party to                  

the encryptor) relies on the power of the congruence equation. Both have a stunning              

irreversibility that makes this system so secure. 

In order to make sense of the plethora of information above, we can dive into an example                 

that shows RSA in action. Imagine a banker, John, that is interested in communicating with a                

client, Helen. John generates 2 random prime numbers: p = 59 and q = 71. Next he multiplies                  

them together to get N = 4189. This operation is easy to do, but challenging to reverse. φ(4189)                  



is comparable to doing φ(59) times φ(71), resulting in a number (59 - 1)(71 - 1) = 4060. John                   

picks an exponent e = 9 to operate with. He computes d by plugging into the formula from                  

earlier: 

 

In this case, k = 8 – this is the value that makes d a whole number. The arithmetic above comes 

out to d = 3609. After doing these steps, he is ready to send information over to Helen. 

John has to send Helen the values for N and e, and omit the rest of the values for p, q, k, 

and d. Helen wants to send John a secret message A. This may be a string of characters that has 

been converted to a number. Let us say A = 73. She does this by computing according to the 

following relationship: 

 

She gets 3636 for her encryption c, which she sends back to John. Now figuring out the message                  

is easy for John. He applies the formula: 

 

Surely enough, A is 73 which is what Helen sent him. After all the mathematical manipulation,                

the end result is still the same. Nowhere during John and Helen’s communication could the               

message be interpreted because John held the key pertaining to retrieving it. 

RSA encryption is not perfect. It is limited by complexity of the key creation, since it is                 

hard to generate large primes efficiently.11 Another issue other than the processing power is the               

slowness of speed, which can be attributed to the sheer amount of calculation and series of steps.                 

Keeping that in mind, the RSA cryptosystem is still one of the best implemented security               



frameworks. Now we are going to introduce an application of the Chinese Remainder Theorem              

to connect cryptosystems resulting in a possibility for RSA networks. 

b.  Connecting Cryptosystems 

With the model perpetuated above, only one person holds access to the key. That one               

person can receive information from many sources. Perhaps there is a different situation, where              

there are two keyholders from different cryptosystems. They may each define their own keys              

according to specific modulo N1 and N2. What if they wanted to share sources, or data according                 

to different congruence structures? 

The Chinese Remainder Theorem can come into play when building these connections.            

Expanding on the example from above, now suppose a banker John has a client Helen, and                

another banker Rob has a client Rose. They may each define their own RSA situations using                

random number generators for inputs p1 and q1, and p2 and q2 respectively. Keeping the data the                 

same for John and Helen’s communication, now we can add data for Rob and Rose’s               

communication.  

Exchange between John and Helen Exchange between Rob and Rose 

  

  

  

 
 

 

 

  



Figure 7. Exchanges in Unique RSA Cryptosystems. 

As we can see from the chart, Rob and Rose’s communication was successful because Rob could                

use the key to figure out Rose’s message. This results in the same number that she sent him at the                    

end of the exchange. 

Evidently 2 cryptosystems have been developed, each with their own data. 

 
Figure 8. Simple Network of RSA Cryptosystems 

Now the Chinese Remainder Theorem can be used to combine that data into one major 

cryptosystem. The system of congruence equations will be the following: 

 

We have done the mathematics to solve this complex problem portrayed below. All of the               

techniques that are used have been discussed throughout the paper. 

 

 

 



 



Reversing the Chinese Remainder Theorem is easy. Finding the residue modulo N1 and N2 will 

result in the original secrets A1 and A2 which stand for the messages. Moreover, cryptographic 

schema such as this one do not have to be limited to 2 parties or 2 data values. But they should 

make sure to keep a thread of reversibility going so that the effects of merging systems can be 

undone to reveal the original messages. Here is another example of a more intricate network: 

 
Figure 9. Elaborate Network of RSA Cryptosystems 

In Figure 9, John, Rob, Mark, Paul, and James are bankers. Helen, Claire, Rose, Suzy, Mary,                

Alice, and Liz are all clients. Evidently, James has more business than the other bankers, but                

focuses on maintaining mutually beneficial relationships with the other financiers. They share            

data in multiple ways, which creates this web of communications or connections. 

The most resourceful use of these resulting cryptographic systems would be for secret 

sharing among different entities. Other potential uses would be to improve storage and better 

organize information. In this way, using the Chinese Remainder Theorem in conjunction with 

RSA functionality is a highly potent solution to amalgamation of companies and their networks 

(not just limited to bankers). It is also a vigorous solution for government military branches 

working together in times of war crises. 



CONCLUSION 

Application of the Chinese Remainder Theorem as seen above should be further explored as it               

relates to secret sharing. Simulation techniques can be developed using a coding language such              

as Python with built in random number generators. These simulations would encapsulate a             

reasonable number of cryptosystems – perhaps 4, 5, or 6 of them – each with their own data                  

(ranging from 15 to 30 successful communications). 

Besides the direct benefit of exploring cryptographic networks introduced in this paper,            

simulating data en masse can lead to new discoveries in prime number theory. Mathematicians              

are still searching for a proof of the Riemann Hypothesis, which asserts that “non-obvious”              

zeroes of the zeta function are complex numbers with a real part ½. This is one of the                  

Millennium Problems, which have $1 million prizes attached to them. Additionally, there is an              

ongoing search for a formula to model the exact prime number distribution (currently a formula               

only exists for the average distribution, called the prime number theorem). As cultivating a list of                

primes has generated little success, analyzing unconventional data in a modulus setting is a good               

area of research for the future. 

Overall, there are tremendous implications of this new concept involving the Chinese            

Remainder Theorem. Certainly, we can dive deeper and see if the ramifications can be even               

greater in the future. 
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GLOSSARY 
 

Modular arithmetic - A system of arithmetic for integers where numbers “wrap around” a 

certain modulus. The primary focus is on working with remainders. This is a subcategory under 

the broader field of number theory, but has a variety of applications, which include modern-day 

cryptography, computer science programs, checking serial number identifiers, and analyzing 

repeating phenomena in nature (biology, chemistry, and physics). 

Linear congruence - One of the basic structures of modular arithmetic. We say a is “equivalent” 

to b modulo n if both integers have the same remainder after division by n. Another way of 

understanding this is that subtracting a from b should always result in an integer that is perfectly 

divisible by n. Linear congruences have an abundance of properties associated with them.  

Equivalence relation - Are binary, and have properties of reflexivity, symmetry, and 

transitivity. Binary implies that they involve interaction from 2 sets. Linear congruences can be 

viewed as equivalence relations because each number is being operated on by a modulo, which 

partitions the integer realm into a remainder set and an ordinary set. All numbers that give the 

same remainder form what is known as an equivalence class. 

Extended Euclidean Algorithm - The Euclidean Algorithm repeatedly applies the division 

algorithm, but shifts the inputs to the left every time. This results in finding the gcd of 2 numbers 

once the remainder has been eliminated. The Extended Euclidean Algorithm uses the process 

from the Euclidean Algorithm to backtrack. The end result is the form ax + by = gcd(a, b), which 

reveals the multiplicative inverse for a number modulo n. 

Multiplicative inverse - The multiplicative inverse of a real number x is a number that results in 

1 when multiplied together with x. In traditional arithmetic, this involves taking the reciprocal of 

the number x. In modular arithmetic, the multiplicative inverse is actually another integer and 

varies depending on prime number theory.  

Greatest Common Divisor (gcd) - Represented in the form gcd(a, b). The gcd is the largest 

positive integer that divides both integers. It is also called the greatest common factor (gcf) and 

the greatest common measure. The gcd is one of the most important units of number theory, 

although it is also taught at an elementary school level. 

System of congruences - When there are multiple congruence equations (parameters), and they 

all have to hold true for a number x. There are multiple solutions for these types of equations, 

involving intuition, substitution, and the Chinese Remainder Theorem. 



Chinese Remainder Theorem - An ancient Chinese theorem that was used to calculate the 

calendar and find the number of soldiers when marching in lines. It has also been called the Sun 

Zhu Theorem after the Chinese mathematician that invented it. Interestingly enough, there was a 

variant of the theorem in ancient Egypt. The Chinese Remainder Theorem states assert that for 

pairwise coprime integers in modular congruences, there is one number x which is a solution. It 

also explores how to find that number x. 

Relatively prime - A synonym for the word coprime. Relatively prime integers do not share any 

factors in common other than 1. The gcd(a, b) if a and b are coprime is 1.  

Cryptography - The art and science of keeping information secure from unintended audiences. 

It is the practice of constructing and analyzing secrecy protocols to keep other parties, also 

known as adversaries, from seizing private messages. Ancient cryptography involved sending 

letters or numbers across distances, whereas modern cryptography is computerized and primarily 

concerned with online cryptosystems. 

Encryption - Encoding information in order to hide it from other parties. Encryption utilizes a 

variety of algorithms to change the original message, known as plaintext, to ciphertext which is 

its disguised state. 

Key - A value or parameter that specifies the transformation of plaintext and ciphertext 

(encryption), and ciphertext into plaintext (decryption). The key is only known to the authorized 

party or parties.  

Cipher - The name given to encryption algorithms. Ancient cryptographic ciphers included the 

Caesar cipher and polyalphabetic cipher, among others. These methods relied on transformations 

to the original text such as letter shifts, number to letter encoding, and mathematical operations 

on numbers. The new ciphers involve complex number theory. Many of them involve modular 

arithmetic like the RSA encryption system. 

Decryption - The process of decoding a message. Decryption uses algorithms to change the 

encrypted ciphertext back into plaintext. It may involve the same key, a related key, or an 

entirely different key to perform this transformation. 

RSA encryption - A commonly used cryptosystem since its creation by Ronald L. Rivest, Adi 

Shamir, and Len Adleman in 1977 (hence its name which stands for Rivest–Shamir–Adleman). 

RSA encryption relies on modular exponentiation to generate ciphertexts that are irreversible 

without the original key. It is known as a public-key cryptosystem because the encryption key is 



public, whereas the decryption key is hidden from everyone except the original cryptographer. It 

uses a modified version of Euler’s Theorem, which in itself is a play on Fermat’s Little Theorem.  

Euler’s totient function - Counts the positive integers up to a given integer N that are relatively 

prime to N. Solving this problem is hard for all numbers unless their prime factorization is 

known. Then φ (pronounced phi) is equal to the product of each of the prime factors minus 1. 

Euler’s totient function is part of prime number theory, and is a type of arithmetic function. 

Arithmetic function - May also be known as a number-theoretic function. It is any function 

whose domain is the positive integers and whose range is over the set of complex numbers. 

Some of the most prominents examples in number theory include Euler’s totient function, tau 

and sigma functions, and the Mobius function. 

Fundamentally hard problem - Any problem that is hard to solve within a reasonable 

timespan. A lot of cryptographic reasoning and development of algorithms depends on creating 

fundamentally hard problems. Although they can be figured out within a period such as 100 

years, by this time information can be moved to other cryptosystems or is no longer relevant. 

RSA networks - An extension of the Chinese Remainder Theorem to link RSA cryptosystems. 

Can be used for secret sharing among multiple entities, eliminating the issue of one person 

having access to data within his/her security framework. This is a novel concept which the paper 

leads up to. It can potentially be used to collect data for induction, leading to advancements in 

prime number theory, not to mention greater security, optimization of storage, and cultivating 

government and business relationships. 
 
 


